1970-01-01
“生存”,还是“死亡”,这是个问题,但更是一个典型的二分类结局指标,我们关注的重点是两种药物治疗后“生存”和“死亡”的分布(或者说病死率)有无差别,由此组成的2*2列联表就是χ2检验中经典的“四格表”(如表1)。
下面一起看看SPSS怎样搞定χ2检验。
1、χ2检验是基于χ2分布的一种假设检验,简单讲就是想看看实际观测数和理论频数偏离程度。比如说,上面提到的例子中服用A药后共观察到187例存活,这里的187例就是“实际观测数”,对应的“理论频数”是187所在行列合计的乘积与总例数的比值,也就是198*223/240=184。所有单元格的实际观测数和理论频数计算出后,可根据如下公式计算χ2,得到相应的P值。
χ2=∑[(实际观测数-理论频数)2/理论频数],ν=(行数-1)*(列数-1)
χ2检验的原假设是实际观测数和理论频数分布一致,如果P<0.05,那么拒绝原假设,认为实际观测数和理论频数分布是不一致的,也就是A药和B药治疗后的转归是不同的。当然有了统计分析软件,我们就不需要这么辛苦的计算啦。
2、如果χ2检验所得P值在0.05左右,或者总例数较小,理论频数较少时,给出的结论一定要谨慎,不要简单给出P>0.05或者P<0.05,靠谱儿的做法是给出明确的P值。另外,利用列联表χ2检验比较不同患者某种治疗结局有无差别时,还应该评估不同组患者是否“同质”。举个例子,患者病情严重程度是否一致,这些特征都可能会影响最终结果的判断,对于这一类问题,可以考虑分层χ2检验,logistic回归进行处理,这些后面我们接着聊~~~
百度浏览 来源 : 医咖会
版权声明:本网站所有注明来源“医微客”的文字、图片和音视频资料,版权均属于医微客所有,非经授权,任何媒体、网站或个人不得转载,授权转载时须注明来源:”医微客”。本网所有转载文章系出于传递更多信息之目的,且明确注明来源和作者,转载仅作观点分享,版权归原作者所有。不希望被转载的媒体或个人可与我们联系,我们将立即进行删除处理。 本站拥有对此声明的最终解释权。
发表评论
注册或登后即可发表评论
登录注册
全部评论(0)