1970-01-01
最近有很多小伙伴在后台咨询”单因素和多因素分析“相关的问题,医咖会陆续发过不少相关的文章,今天小咖就对曾发过的教程做一下合集,方便大家收藏查看。
(注:以下显示蓝色的小标题,可以直接点击来查看文章详情)
单因素回归分析与我们常用的传统的单因素分析方法,如t检验、方差分析和卡方检验等方法,它们之间在一定程度上其实是等价的。
在多因素调整分析方法中,根据因变量的类型不同,我们最常应用到的三种回归模型即:多重线性回归、logistic回归及Cox回归。三种回归模型应用的条件和区别是什么呢?
需要具体问题具体分析,有时这么做没问题,有时会有问题。但有一点是很明确的:决不能死板地完全按这一规则来分析。
如果做单因素分析,是不是只把单因素分析中有意义的变量纳入多因素分析,而没有统计学意义的变量就不用纳入多因素分析了?
单因素分析可以为多因素分析提供很多有效的信息,将单因素和多因素分析的结果进行比较,也能发现很多问题。如果单因素和多因素分析的结果一致的话,结论就比较稳定且容易解释,但是我们常常会遇到单因素和多因素分析的结果不一致,甚至是出现相互矛盾的尴尬情况,此时又该怎么办,该如何去解释呢?
在面对众多自变量需要进行分析时,到底如何来确定谁是可疑因素,从而进入到多因素回归分析呢?
7. 纠结:有个可疑的混杂因素Z,要不要放到多因素回归模型中呢?
在统计学进阶的道路上,也会不断有新的方法和思路得到发展和应用,本文要向大家介绍的,如何筛选多因素回归分析候选变量的进阶方法,希望能够拓展一下大家的思路,帮助大家对多因素回归模型的建立加深理解。
扫码关注“医咖会”公众号,及时获取最新统计教程
百度浏览 来源 : 医咖会
版权声明:本网站所有注明来源“医微客”的文字、图片和音视频资料,版权均属于医微客所有,非经授权,任何媒体、网站或个人不得转载,授权转载时须注明来源:”医微客”。本网所有转载文章系出于传递更多信息之目的,且明确注明来源和作者,转载仅作观点分享,版权归原作者所有。不希望被转载的媒体或个人可与我们联系,我们将立即进行删除处理。 本站拥有对此声明的最终解释权。
发表评论
注册或登后即可发表评论
登录注册
全部评论(0)