1970-01-01
为了探讨基因X突变与恶性肿瘤Y不同组织类型发生风险的关系,某医生设计了一项病例对照研究。该医生纳入所在科室一年收治的145名该恶性肿瘤患者,并从医院体检数据库中随机选择了100名未患该肿瘤的体检者作为对照。相关信息整理成表1:
表1 各病例组织类型与突变情况
变量赋值情况如表2:
表2 变量及变量赋值情况
1) SPSS结果中会给出Pseudo R-Square,即伪R方,或假R方,与普通线性回归中衡量模型拟合好坏的R方概念类似。但由于Logistic回归中因变量为分类变量,其计算方法与普通线性回归中的R方不同,其值一般较小,可不予关注。
2) 无序多分类Logistic回归并非只用于病例对照研究中,只要分析时指定对照,且与指定的对照进行比较得出的回归结果可以说明想探究的问题即可。如在本研究中,若研究者关注的不是基因X突变对不同类别的肿瘤发生的风险情况,而是基因X突变对三种类别肿瘤的发生风险是否有差异,以及差异的大小,那么就不需要纳入对照。
在本例分析中虽然我们可以在数值上看出基因X突变对三种类别肿瘤的发生风险是不同的,但无法从统计学上进行判断,因为这种差异并没有进行统计学检验。要探讨这种差异,可以将参考类别选为三种类别肿瘤中的一中,如想比较腺癌和鳞癌的差异,则可选鳞癌组为对照,这样得出的回归系数即为基因X突变引起两种类别肿瘤发生风险的比值。
3) 实际应用中可能也需要调整一些混杂因素变量,若变量为分类型变量则放入因子位置,若为连续型变量则放入协变量位置,其分析和解释与要分析的暴露变量是一致的。
4) 可以把无序多分类Logistic回归看作是多个二分类Logistic回归的同时实现。
无序多分类Logistic回归适用条件
1) 不限于病例对照类型;
2) 因变量为分类变量,分类大于两个,且各分类之间并无次序关系。
百度浏览 来源 : 医咖会
版权声明:本网站所有注明来源“医微客”的文字、图片和音视频资料,版权均属于医微客所有,非经授权,任何媒体、网站或个人不得转载,授权转载时须注明来源:”医微客”。本网所有转载文章系出于传递更多信息之目的,且明确注明来源和作者,转载仅作观点分享,版权归原作者所有。不希望被转载的媒体或个人可与我们联系,我们将立即进行删除处理。 本站拥有对此声明的最终解释权。
发表评论
注册或登后即可发表评论
登录注册
全部评论(0)