参考文献
[1] Brennan, K., Martin, K., FitzGerald, S. P., Sullivan, J. O., Wu, Y., Blanco, A., Richardson, C., & Mc Gee, M. M. (2020). A comparison of methods for the isolation and separation of extracellular vesicles from protein and lipid particles in human serum | Scientific Reports. Scientific Reports, 10(1039). https://www.nature.com/articles/s41598-020-57497
[2] Isola, A., & Chen, S. (2016). Exosomes: The Messengers of Health and Disease. Current Neuropharmacology, 15(1), 157–165. https://doi.org/10.2174/1570159X14666160825160421
[3] Gruenberg, J., & Stenmark, H. (2004). The biogenesis of multivesicular endosomes.Nature Reviews Molecular Cell Biology, 5(4), 317–323. https://doi.org/10.1038/nrm1360
[4] Piper, R. C., & Katzmann, D. J. (2007). Biogenesis and Function of Multivesicular Bodies. Annual Review of Cell and Developmental Biology, 23(1), 519–547. https://doi.org/10.1146/annurev.cellbio.23.090506.123319
[5] Harding, C. V., Heuser, J. E., & Stahl, P. D. (2013). Exosomes: Looking back three decades and into the future. The Journal of Cell Biology, 200(4), 367–371. https://doi.org/10.1083/jcb.201212113
[6] Statello, L., Maugeri, M., Garre, E., Nawaz, M., Wahlgren, J., Papadimitriou, A., Lundqvist, C., Lindfors, L., Collén, A., Sunnerhagen, P., Ragusa, M., Purrello, M., Di Pietro, C., Tigue, N., & Valadi, H. (2018). Identification of RNA-binding proteins in exosomes capable of interacting with different types of RNA: RBP-facilitated transport of RNAs into exosomes. PLOS ONE, 13(4), e0195969. https://doi.org/10.1371/journal.pone.0195969
[7] Behbahani, G. D., Khani, S., Hosseini, H. M., Abbaszadeh-Goudarzi, K., & Nazeri, S. (2016). The role of exosomes contents on genetic and epigenetic alterations of recipient cancer cells. Iranian Journal of Basic Medical Sciences, 19(10), 1031–1039.
[8] Di Leva, G., & Croce, C. M. (2013). MiRNA profiling of cancer. Current Opinion in Genetics & Development, 23(1), 3–11. https://doi.org/10.1016/j.gde.2013.01.004
[9] Huotari, J., & Helenius, A. (2011). Endosome maturation: Endosome maturation. The EMBO Journal, 30(17), 3481–3500. https://doi.org/10.1038/emboj.2011.286
[10] van Niel, G., D’Angelo, G., & Raposo, G. (2018). Shedding light on the cell biology of extracellular vesicles. Nature Reviews Molecular Cell Biology, 19(4), 213–228. https://doi.org/10.1038/nrm.2017.125
[11] Bebelman, M. P., Bun, P., Huveneers, S., van Niel, G., Pegtel, D. M., & Verweij, F. J. (2020). Real-time imaging of multivesicular body–plasma membrane fusion to quantify exosome release from single cells. Nature Protocols, 15(1), 102–121. https://doi.org/10.1038/s41596-019-0245-4
[12] Muralidharan-Chari, V., Clancy, J. W., Sedgwick, A., & D’Souza-Schorey, C. (2010). Microvesicles: Mediators of extracellular communication during cancer progression. Journal of Cell Science, 123(10), 1603–1611. https://doi.org/10.1242/jcs.064386
[13] Weidle, U. H., Birzele, F., Kollmorgen, G., & Rüger, R. (2017). The Multiple Roles of Exosomes in Metastasis. Cancer Genomics & Proteomics, 14(1), 1–16. https://doi.org/10.21873/cgp.20015
[14] Mu, W., Rana, S., & Zöller, M. (2013). Host Matrix Modulation by Tumor Exosomes Promotes Motility and Invasiveness. Neoplasia, 15(8), 875-IN4. https://doi.org/10.1593/neo.13786
[15] Zhang, L., Zhang, S., Yao, J., Lowery, F. J., Zhang, Q., Huang, W.-C., Li, P., Li, M., Wang, X., Zhang, C., Wang, H., Ellis, K., Cheerathodi, M., McCarty, J. H., Palmieri, D., Saunus, J., Lakhani, S., Huang, S., Sahin, A. A., … Yu, D. (2015). Microenvironment-induced PTEN loss by exosomal microRNA primes brain metastasis outgrowth. Nature, 527(7576), 100–104. https://doi.org/10.1038/nature15376
[16] Wu, D., Deng, S., Liu, T., Han, R., Zhang, T., & Xu, Y. (2018). TGF-β-mediated exosomal lnc-MMP2-2 regulates migration and invasion of lung cancer cells to the vasculature by promoting MMP2 expression. Cancer Medicine, 7(10), 5118–5129. https://doi.org/10.1002/cam4.1758
[17] Li, Y., Yin, Z., Fan, J., Zhang, S., & Yang, W. (2019). The roles of exosomal miRNAs and lncRNAs in lung diseases. Signal Transduction and Targeted Therapy, 4(1), 47. https://doi.org/10.1038/s41392-019-0080-7
[18] Shi, M., Liu, C., Cook, T. J., Bullock, K. M., Zhao, Y., Ginghina, C., Li, Y., Aro, P., Dator, R., He, C., Hipp, M. J., Zabetian, C. P., Peskind, E. R., Hu, S.-C., Quinn, J. F., Galasko, D. R., Banks, W. A., & Zhang, J. (2014). Plasma exosomal α-synuclein is likely CNS-derived and increased in Parkinson’s disease. Acta Neuropathologica, 128(5), 639–650. https://doi.org/10.1007/s00401-014-1314-y
[19] Saeedi, S., Israel, S., Nagy, C., & Turecki, G. (2019). The emerging role of exosomes in mental disorders. Translational Psychiatry, 9(1), 122. https://doi.org/10.1038/s41398-019-0459-9
[20] Keller, M. D., Ching, K. L., Liang, F.-X., Dhabaria, A., Tam, K., Ueberheide, B. M., Unutmaz, D., Torres, V. J., & Cadwell, K. (2020). Decoy exosomes provide protection against bacterial toxins. Nature, 579(7798), 260–264. https://doi.org/10.1038/s41586-020-2066-6
[21] Sharma, P., Mesci, P., Carromeu, C., McClatchy, D. R., Schiapparelli, L., Yates, J. R., Muotri, A. R., & Cline, H. T. (2019). Exosomes regulate neurogenesis and circuit assembly. Proceedings of the National Academy of Sciences, 116(32), 16086–16094. https://doi.org/10.1073/pnas.1902513116
[22] Halvaei, S., Daryani, S., Eslami-S, Z., Samadi, T., Jafarbeik-Iravani, N., Bakhshayesh, T. O., Majidzadeh-A, K., & Esmaeili, R. (2018). Exosomes in Cancer Liquid Biopsy: A Focus on Breast Cancer. Molecular Therapy - Nucleic Acids, 10, 131–141. https://doi.org/10.1016/j.omtn.2017.11.014
[23] Chang, W., & Wang, J. (2019). Exosomes and Their Noncoding RNA Cargo Are Emerging as New Modulators for Diabetes Mellitus. Cells, 8(8), 853. https://doi.org/10.3390/cells8080853
[24] Huang, T., & Deng, C.-X. (2019). Current Progresses of Exosomes as Cancer Diagnostic and Prognostic Biomarkers. International Journal of Biological Sciences, 15(1), 1–11. https://doi.org/10.7150/ijbs.27796
[25] Chen, I.-H., Xue, L., Hsu, C.-C., Paez, J. S. P., Pan, L., Andaluz, H., Wendt, M. K., Iliuk, A. B., Zhu, J.-K., & Tao, W. A. (2017). Phosphoproteins in extracellular vesicles as candidate markers for breast cancer. Proceedings of the National Academy of Sciences, 114(12), 3175–3180. https://doi.org/10.1073/pnas.1618088114
[26] Taylor, D. D., & Gercel-Taylor, C. (2008). MicroRNA signatures of tumor-derived exosomes as diagnostic biomarkers of ovarian cancer. Gynecologic Oncology, 110(1), 13–21. https://doi.org/10.1016/j.ygyno.2008.04.033
[27] Batrakova, E. V., & Kim, M. S. (2015). Using exosomes, naturally-equipped nanocarriers, for drug delivery. Journal of Controlled Release, 219, 396–405. https://doi.org/10.1016/j.jconrel.2015.07.030
[28] Chen, C. C., Liu, L., Ma, F., Wong, C. W., Guo, X. E., Chacko, J. V., Farhoodi, H. P., Zhang, S. X., Zimak, J., Ségaliny, A., Riazifar, M., Pham, V., Digman, M. A., Pone, E. J., & Zhao, W. (2016). Elucidation of Exosome Migration Across the Blood–Brain Barrier Model In Vitro. Cellular and Molecular Bioengineering, 9(4), 509–529. https://doi.org/10.1007/s12195-016-0458-3
[29] Fu, W., Lei, C., Liu, S., Cui, Y., Wang, C., Qian, K., Li, T., Shen, Y., Fan, X., Lin, F., Ding, M., Pan, M., Ye, X., Yang, Y., & Hu, S. (2019). CAR exosomes derived from effector CAR-T cells have potent antitumour effects and low toxicity. Nature Communications, 10(1), 4355. https://doi.org/10.1038/s41467-019-12321-3
[30] Yoshimura, A., Sawada, K., & Kimura, T. (2017). Is the exosome a potential target for cancer immunotherapy? Annals of Translational Medicine, 5(5), 117–117. https://doi.org/10.21037/atm.2017.01.47
[31] Weidle, U. H., Birzele, F., Kollmorgen, G., & Rüger, R. (2017). The Multiple Roles of Exosomes in Metastasis. Cancer Genomics & Proteomics, 14(1), 1–16. https://doi.org/10.21873/cgp.20015
[32] Livshits, M. A., Khomyakova, E., Evtushenko, E. G., Lazarev, V. N., Kulemin, N. A., Semina, S. E., Generozov, E. V., & Govorun, V. M. (2015). Isolation of exosomes by differential centrifugation: Theoretical analysis of a commonly used protocol. Scientific Reports, 5(1), 17319. https://doi.org/10.1038/srep17319
[33] Yu, L.-L., Zhu, J., Liu, J.-X., Jiang, F., Ni, W.-K., Qu, L.-S., Ni, R.-Z., Lu, C.-H., & Xiao, M.-B. (2018). A Comparison of Traditional and Novel Methods for the Separation of Exosomes from Human Samples. BioMed Research International, 2018, 1–9. https://doi.org/10.1155/2018/3634563
[34] Alvarez, M. L., Khosroheidari, M., Kanchi Ravi, R., & DiStefano, J. K. (2012). Comparison of protein, microRNA, and mRNA yields using different methods of urinary exosome isolation for the discovery of kidney disease biomarkers. Kidney International, 82(9), 1024–1032. https://doi.org/10.1038/ki.2012.256
[35] Patel, G. K., Khan, M. A., Zubair, H., Srivastava, S. K., Khushman, M., Singh, S., & Singh, A. P. (2019). Comparative analysis of exosome isolation methods using culture supernatant for optimum yield, purity and downstream applications. Scientific Reports, 9(1), 5335. https://doi.org/10.1038/s41598-019-41800-2
[36] Liang, K., Liu, F., Fan, J., Sun, D., Liu, C., Lyon, C. J., Bernard, D. W., Li, Y., Yokoi, K., Katz, M. H., Koay, E. J., Zhao, Z., & Hu, Y. (2017). Nanoplasmonic quantification of tumour-derived extracellular vesicles in plasma microsamples for diagnosis and treatment monitoring. Nature Biomedical Engineering, 1(4), 0021. https://doi.org/10.1038/s41551-016-0021
[37] Contreras-Naranjo, J. C., Wu, H.-J., & Ugaz, V. M. (2017). Microfluidics for exosome isolation and analysis: Enabling liquid biopsy for personalized medicine. Lab on a Chip, 17(21), 3558–3577. https://doi.org/10.1039/C7LC00592J
发表评论
注册或登后即可发表评论
登录注册
全部评论(0)